SOSPD Controllers Tuning by Means of an Evolutionary Algorithm

نویسندگان

  • Jesús-Antonio Hernández-Riveros
  • Jorge-Humberto Urrea-Quintero
چکیده

The Proportional Integral Derivative (PID) controller is the most widely used industrial device to monitoring and controlling processes. There are numerous methods for estimating the controller parameters, in general, resolving particular cases. Current trends in parameter estimation minimize an integral performance criterion. Therefore, the calculation of the controller parameters is proposed as an optimization problem. Although there are alternatives to the traditional rules of tuning, there is not yet a study showing that the use of heuristic algorithms it is indeed better than using the classic methods of optimal tuning. In this paper, the evolutionary algorithm MAGO is used as a tool to optimize the controller parameters. The procedure is applied to a range of standard plants modeled as a Second Order System plus Time Delay. Better results than traditional methods of optimal tuning, regardless of the operating mode of the controller, are yielded.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Offline Auto-Tuning of a PID Controller Using Extended Classifier System (XCS) Algorithm

Proportional + Integral + Derivative (PID) controllers are widely used in engineering applications such that more than half of the industrial controllers are PID controllers. There are many methods for tuning the PID parameters in the literature. In this paper an intelligent technique based on eXtended Classifier System (XCS) is presented to tune the PID controller parameters. The PID controlle...

متن کامل

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

UPFC Siting and Sizing in Power Network Using Two Different Evolutionary Algorithm

In emerging electric power systems, increased transactions often lead to the situations where the system no longer remains in secure operating region. The flexible Ac transmission system (FACTS) controllers can play an important role in the power system security enhancement. However, due to high capital investment, it is necessary to locate these controllers optimally in the power system. FACTS...

متن کامل

Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation

Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...

متن کامل

Prediction of Surface Roughness by Hybrid Artificial Neural Network and Evolutionary Algorithms in End Milling

Machining processes such as end milling are the main steps of production which have major effect on the quality and cost of products. Surface roughness is one of the considerable factors that production managers tend to implement in their decisions. In this study, an artificial neural network is proposed to minimize the surface roughness by tuning the conditions of machining process such as cut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJNCR

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014